Alpha-Particle Emitting 213Bi-Anti-EGFR Immunoconjugates Eradicate Tumor Cells Independent of Oxygenation
نویسندگان
چکیده
Hypoxia is a central problem in tumor treatment because hypoxic cells are less sensitive to chemo- and radiotherapy than normoxic cells. Radioresistance of hypoxic tumor cells is due to reduced sensitivity towards low Linear Energy Transfer (LET) radiation. High LET α-emitters are thought to eradicate tumor cells independent of cellular oxygenation. Therefore, the aim of this study was to demonstrate that cell-bound α-particle emitting (213)Bi immunoconjugates kill hypoxic and normoxic CAL33 tumor cells with identical efficiency. For that purpose CAL33 cells were incubated with (213)Bi-anti-EGFR-MAb or irradiated with photons with a nominal energy of 6 MeV both under hypoxic and normoxic conditions. Oxygenation of cells was checked via the hypoxia-associated marker HIF-1α. Survival of cells was analysed using the clonogenic assay. Cell viability was monitored with the WST colorimetric assay. Results were evaluated statistically using a t-test and a Generalized Linear Mixed Model (GLMM). Survival and viability of CAL33 cells decreased both after incubation with increasing (213)Bi-anti-EGFR-MAb activity concentrations (9.25 kBq/ml-1.48 MBq/ml) and irradiation with increasing doses of photons (0.5-12 Gy). Following photon irradiation survival and viability of normoxic cells were significantly lower than those of hypoxic cells at all doses analysed. In contrast, cell death induced by (213)Bi-anti-EGFR-MAb turned out to be independent of cellular oxygenation. These results demonstrate that α-particle emitting (213)Bi-immunoconjugates eradicate hypoxic tumor cells as effective as normoxic cells. Therefore, (213)Bi-radioimmunotherapy seems to be an appropriate strategy for treatment of hypoxic tumors.
منابع مشابه
Targeted Alpha-Particle Immunotherapy with Bismuth-213 and Actinium-225 for Acute Myeloid Leukemia
Lintuzumab, a humanized anti-CD33 antibody, targets myeloid leukemia cells and has modest activity against acute myeloid leukemia (AML). To increase the antibody’s potency yet avoid nonspecific cytotoxicity seen with -emitting isotopes, lintuzumab was conjugated to the -emitters bismuth-213 (213Bi) and actinium-225 (225Ac). The 46-minute half-life of 213Bi limits its widespread use. Therefore...
متن کاملSolid-tumor radionuclide therapy dosimetry: new paradigms in view of tumor microenvironment and angiogenesis.
PURPOSE The objective of this study is to evaluate requirements for radionuclide-based solid tumor therapy by assessing the radial dose distribution of beta-particle-emitting and alpha-particle-emitting molecules localized either solely within endothelial cells of tumor vasculature or diffusing from the vasculature throughout the adjacent viable tumor cells. METHODS Tumor blood vessels were m...
متن کاملEfforts to control the errant products of a targeted in vivo generator.
Alpha-particle immunotherapy by targeted alpha-emitters or alpha-emitting isotope generators is a novel form of extraordinarily potent cancer therapy. A major impediment to the clinical use of targeted actinium-225 (225Ac) in vivo generators may be the radiotoxicity of the systemically released daughter radionuclides. The daughters, especially bismuth-213 (213Bi), tend to accumulate in the kidn...
متن کاملMicrobicidal power of alpha radiation in sterilizing germinating Bacillus anthracis spores.
Radioimmunotherapy (RIT) takes advantage of the specificity and affinity of the antigen-antibody interaction to deliver microbicidal radioactive nuclides to a site of infection. In this study, we investigated the microbicidal properties of an alpha particle-emitting 213Bi-labeled monoclonal antibody (MAb), EA2-1 (213Bi-EA2-1), that binds to the immunodominant antigen on Bacillus anthracis spore...
متن کاملTreatment of Peritoneal Carcinomatosis by Targeted Delivery of the Radio-Labeled Tumor Homing Peptide 213Bi-DTPA-[F3]2 into the Nucleus of Tumor Cells
BACKGROUND Alpha-particle emitting isotopes are effective novel tools in cancer therapy, but targeted delivery into tumors is a prerequisite of their application to avoid toxic side effects. Peritoneal carcinomatosis is a widespread dissemination of tumors throughout the peritoneal cavity. As peritoneal carcinomatosis is fatal in most cases, novel therapies are needed. F3 is a tumor homing pept...
متن کامل